
J .  Fluid Me&. (1970). vol. 42, part 1, pp. 193-200 

Printed in Great Britain 
193 

On Wilton’s ripples: a special case of 
resonant interactions 
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(Received 24 September 1969) 

The phenomenon of second harmonic resonance for capillary-gravity waves is 
reconsidered here by the asymptotic method of multiple time and space scales. 
The periodic finite amplitude waves of permanent form found by Wilton in 1915 
which correspond to this configuration are shown to be no more than a special 
case of the more general resonant interaction theory, and owe their existence 
to a critical choice of initial conditions. It is further suggested that the influence 
of viscous dissipation will render this solution virtually undetectable in a real 
liquid. 

1. Introduction 
In  a remarkable paper, Simmons (1969) obtained a set of differential equations 

governing the dynamics of the resonant interaction of two wave modes that are 
harmonically related and identified the process as a ‘ second harmonic resonance ’. 
This is no more than a special case of the now familiar second-order triad 
resonances for which two of the members of the triad coalesce, the closure being 
its second harmonic, and the propagation is uni-directional. The case investigated 
is easily seen to occur for capillary-gravity waves in virtue of the existence of a 
minimum value for the phase speed. That is, there is a wave-number such that 
a free wave and its free second harmonic can travel at identical phase speeds to 
the lowest order of approximation and it is natural to expect a resonance between 
these two free components. The fundamental wave-number corresponding to 
this possibility is k = (g/2y)*, g being gravity and y the ratio of the surface tension 
to the density of the fluid. For water, this is a wavelength of about 2.4 cm. 

The same configuration was investigated by Wilton (1915) who recognized 
the resonance as a secular forcing, and went on to eliminate the secularity by 
allowing the phase speed to be slightly shifted by an amount proportional to 
the small maximum slope of the waves, but retaining the assumption that the 
individual amplitudes remain constant. With proper allowance for what amounts 
to a ‘PoincarB frequency shift ’,t Wilton obtained strictly periodic ‘finite ampli- 
tude waves of permanent form ’ and further found that a necessary condition for 
this type of propagation is that the constant amplitudes of the fundamental and 
second harmonic be precisely in the ratio 2: 1. The same configuration was ex- 
amined again by Pierson & Fife (1961) with essentially the same results. 

t This terminology and much of the subsequent is that repopularized by Cole (1968), 
where the multiple scale procedure to be used here is presented clearly. 
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McGoldrick (1965) suggested that this configuration could be analyzed in the 
framework of resonant interaction theory, but gave an algebraically wrong 
solution. Simmons, by a variational method, reinvestigated the second-order 
triad resonance theory with allowance for slow spatial and temporal modulations 
of the amplitudes of the modes. By suitable averaging of a Lagrangian for the 
system, he showed how to extract the equations for the slow variations of the 
lowest order amplitudes and discussed the properties of the three types of solu- 
tions that occur, namely: (i) pure amplitude modulations, (ii) amplitude modula- 
tions accompanied by frequency modulations and (iii) constant-amplitude 
linearly frequency modulated solutions which correspond to the Poincark type 
solutions. For the degenerate case of second harmonic resonance, he correctly 
obtained the resonance equations and their type (i) solutions which have recently 
been verified experimentally by McGoldrick ( 1970), but Simmons apparently 
overlooked the type (ii) and (iii) solutions. It is the purpose of this brief paper to 
show that these other solutions exist and that the type (iii) solution is indeed the 
periodic permanent form solution of Wilton. We further suggest that the in- 
fluence of inevitable viscous dissipation present a t  these scales of motion will 
make the detection of these periodic solutions practically impossible for ordinary 
liquids. 

The elegant variational technique used by Simmons has the slight disadvantage 
that the higher order corrections cannot be obtained since the terms responsible 
for them are obliterated by the averaging procedure. It is for just this reason that 
the investigation briefly presented in the next section is begun ab initio by scaling 
the relevant dynamical equations in such a way that all dependent variables 
are O( 1) dimensionless quantitites and all constants (wave-numbers, frequencies) 
are made O( l ) ,  the scaling parameter being, of course the maximum wave slope. 
Allowance for the slow-scale variations is made by requiring the dependent 
variables to contain explicit dependence on multiple time and space variables, 
and an asymptotically valid sequence of approximations, is obtained in the 
usual manner. The closure at  the fist-order results in Simmons’s equations, but 
the formalism allows the higher order corrections to be determined sequentially, 
the first of which is briefly considered here. 

2. The multiple scale procedure 
If a prime is used to denote dimensional variables, then everything is made 

dimensionless according to the scheme 5 = c’/a, q5 = #’lac, x = K X ’ ,  t = at’, 
k: = k ’ / K ,  o = @‘/a where a, c,  K and R are typical dimensional amplitude, 
phase speed, wave-number and frequency. Then the exact kinematic boundary 
condition at the free surface becomes 

&-&+sVq5.Vc= 0 at x = €5, (2.1) 

where E = a K .  The dynamic boundary condition is obtained from the substantial 
derivative of the Bernoulli equation evaluated at  the free surface which is 
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at z = E<, exactly. Here h = g1c/Q2, p = ~ K ~ / Q ~ ,  DIDt = ajat +sV#.V, y is the 
surface tension coefficient divided by density, F ( ( )  is the sum of the principal 
curvatures, and the atmospheric pressure is as usual taken to be constant. 
Equations (2.1) and (2.2) together with Laplace’s equation and the condition that 
V$ vanish as x -+ - co govern the problem exactly. 

Now suppose that the dependent variables may be expanded according to 

( = ((1) + €fp + . . . ; $ = $(I) + s p  + . . . . (2.3) 

Further, let the amplitudes of the motion be slowly varying functions of time 
and space, the dependence being formally on ‘slow scales) T = st and X = EX. 
Then Taylor series expansion of the free surface conditions about z = 0 together 
with ajat --f ajat + E alaT and apxi -+ ajax, + s apX, yields a sequence of approxima- 
tions for propagation in one direction, taken to be that of x. The O( 1) equations are 

(p - $p = 0 (2 = 0 ) )  

These are of course the familiar equations of the linearized theory. In  the second, 
the kinematic boundary condition has been used to eliminate C(l) resulting in a 
linear equation for #(l) alone. The last three of (2.4) constitute the problem for 
the O( 1) potential on the rapidly varying scales, and the O( 1) free surface dis- 
placement is determined via the kinematic condition (2.4a). As is usual, the 
slow scale behaviour of the O( 1) solutions is arbitrary and cannot be determined 
until the next order problem is set, which follows. 

The O(s) equations then are, after some manipulation 

(2.5 a-d) 1 
@) - &) = 4s) - ($) - (p#;p)z, 

$2;’ + 

#g + $L:) = - 2($i% + $$)), 

- p#;2z = - {2#:; + - p$gL - 2pQ3,} 

+ 3p(c~1)#L:9~ - (#p’$;l’ + $L1)$L1’)t, 

($&’)+#$)) and ($L2)+&))  -+ 0 (z  -+ --a). 
In  order that the sequence of approximations (2.3) be bounded, the secularity 
producing terms on the right-hand side of (2 .5b )  if any must be eliminated, 
resulting in a differential equation for the slow scale behaviour of the O(1) 
solutions. 

For the problem considered here, we look for solutions that to O(1) consist 
of a superposition of a fundamental wave and its second harmonic, both of which 
independently satisfy equations (2.4a-d). Writing 

((1) = aj(X, T )  ej@ (2.6) 
j = f 1 , 1 2  

where + = kx - wt, the rapidly varying phase function, and aWj = a: in order 
that Q1) be real, then the O( 1)  solutions are 

13-2 
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where b ,  = - b?. Equation (2 .4b )  yields the dispersion relation 

(jw)'/ / jkl  = A+/@)' (j = 1,2)  (2.8) 

and in order that both the fundamental and the second harmonic ( j  = 1,2)  
satisfy (2.8), then we must have k2 = A/2,u, or in dimensional terms k' = (g/2y)4. 
The kinematic condition ( 2 . 4 ~ )  yields no more than b j ( X ,  0, T) = u j ( X ,  T). 

Substitution of (2 .6 )  and ( 2 . 7 )  into the O(s)  dynamic boundary condition (2 .5b )  
yields after a bit of algebra 

&' + A # p  - p@gL = [ 2 - {alT + Ula,, + i w ]  kl a:a,) eip 

w2 
+ 4  -{a,,+ U,a,,+iwlkl a; /2}e2ie  

+ 18iw3a1a, e3i@ + 32iw3aie4i@ 

lkl 

+ [. ..I*. (2 .9)  
1 

Here, Ul = 5w/6lkl and U, = 7w/61kl are the group velocities of the fundamental 
and second harmonic waves respectively. The condition that qP) be free of 
secularities clearly is that the expressions in the curly brackets vanish separately, 
or a,,+ Ulalx = - iwlkJ a?a,, 

a,,+ U2a,, = - giwl kl a:. 
(2.10) } 

These are precisely the second harmonic resonance equations obtained by 
Simmons (1969),  here expressed in scaled complex form. Writing uj = + A j e i 9 ,  
where Aj and Sj are the real amplitudes and phases, then on separation of real 
and imaginary parts, (2.10) become 

(2.11) 

where 0 = 20, - 0, may be called the relative phase. There is no general solution 
of (2.11) subject to arbitrary initial conditions yet; however Simmons has 
obtained special solutions for the case where the partial differential operators 
may be expressed as total derivatives with respect to a single characteristic 
variable. For simplicity, however, and for ease of comparison with the Wilton- 
type solutions, we will suppose for the rest of this paper that there is no spatial 
variation of the amplitudes on the long scale, a/aX = 0. The desired features of 
the solutions are not lost. 

The first two of (2.11) possess an 'energy integral' A2,+2Ai = E which is 
proportional to the O(1) energy density in the system and is independent of 
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the relative phase. Further, following Simmons, an integral involving the relative 
phase is easily obtained (divide the first of (2 .11)  by the third, the second by the 
fourth, rearrange, add, and integrate), being A;A2 COB 6 = L ,  and elementary 
considerations will show that 0 < L2 < &E3. Then (2 .11)  become 

(2 .12)  

The first two of (2 .12)  integrate directly giving 

(2 .13 )  

with E = [ 9 ( ~ 3 - ~ 1 ) ] 4 9 w l h l ( T - T 0 ) ,  andwheretheconstantsparetherootsofthe 
cubic equation E x 2  - x3 - 2Lz  = 0, and - ~ J E  < / 1 1  < 0 < p2 < $E < p3 < E ,  and 
the modulus is given by Ez = (/13 -p2) / (p3-p1) .  The individual phases then follow 
by integration of the remaining two of (2 .12) ,  or 

A;(T) = /33-(p3-p2)sn2(%;E), 

= i {p1+p2+ (p3-@Z)Sn2(8;L)}, 

} (2.14) 
ol(T)-ol(TO) = -42L/%1(p3-p1)-' n(E7 a:, i), 
o2(T)-02(TO) = - J ~ L ( P ~ + P ~ ) - ~ ( P ~ - P ~ ) - '  6, 

where II is the incomplete elliptic integral of the third kind, with at = 1 - P2/p3 
and -a; = (p3 -P2)/(pl +pz). The complete solution then consists of periodic 
amplitude modulations together with periodic zero-mean phase modulations 
(same period) superimposed on a slow linear growth of the phases. This linear 
growth is most easily interpreted as being an O(E)  frequency shift: that is, all 
second harmonic resonant configurations (save L = 0, to which we shall return) 
possess an O(B) correction to their phase speeds. 

A graphic presentation of the amplitude modulations, devoid of the cumber- 
some elliptic notation is most easily presented in the phase-planes for the in- 
dividual amplitudes (figure 1) which are easily constructed from (2 .12 )  directly. 
The outermost trajectories are those for which L = 0, for which the individual 
phases are constant and the relative phase is exactly +-in. The modulation 
period becomes infinite, and the solutions degenerate to their limiting cases of 
hyperbolic functions. Simmons concluded that all solutions for second harmonic 
resonant configurations coalesced to these, which is not so. The existence of 
this soluOion clearly requires very special initial conditions : namely, if the 
relative phase is ever A in, then it remains so for all time. The spatially modulated 
counterparts of these solutions have been investigated in detail experimentally 
by McGoldrick (1970)  with particular attention to the initial conditions, and 
need not be further treated here. 

For initial conditions such that 0 < L2 < &E3 which corresponds to the inner 
trajectories in figure 1, the picture is one of simultaneous amplitude and phase 
modulations. The individual amplitudes can never vanish, and the phases are 
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frequency modulated about a slightly shifted mean frequency. The relative phase 
8 modulates periodically in the range -&I < -Onh < 8 < +Om < in where 
0, = cos-1 [L/(&E3)h]. The phase difference is maximum when the amplitudes 
are undergoing their greatest growth, which occurs when A2, = 4AE indicated by 
the dashed vertical lines in figure 1, and the waves are in phase (8 = 0) at  times 
when the amplitude changes are zero. 

FICUXE 1. Phase plane trajectories of the individual amplitudes. The outermost trajectory 
is for L = 0 and for which the phase modulations disappear. The innerrnost trajectory 
(points) correspond to L2 = 52,-E3, for which the amplitude modulations disappear and the 
phase changes arc linear. The maximum relative phase 8, occurs at the intersections of the 
trajectories with the dashed lines. 

The remaining possibility is for initial conditions such that L = (&-E3)6. For 
non-zero amplitudes this requires that cos8 = 1, whence the relative phase 
modulation vanishes. The trajectories become the single points on the abscissae 
of figure 1;  that is, the amplitude modulations vanish entirely. The solutions 
become A2, = 4Ag = QE, their initial values, and the individual phases are linearly 
modulated, being 8, = F $A,wlkl T and 8, = T +A,wlkI T, the upper or lower 
sign chosen according to the sign of the amplitudes, A, = 5 *A,, and we have 
chosen B,(T,) = 0 for simplicity. For this case, the complete O(1) solution for 
5 is 

{(I) = A, cos ( k ~  - wt T &I kj A,T) 5 +A, cos 2(kx - wt F &jkf A,T) ,  

or in dimensional terms 

c(’)’ = A;{cos[~’x’-oJ’(~ f $Aik‘)t’] + & c o s ~ [ ~ ’ x ’ - w ’ ( ~  5 $Aik’) t ’ ]} .  (2.15) 

This is precisely the lowest order periodic solution found by Wilton. The upper 
signs correspond to a ‘gravity-type’ profile with phase speed increased by an 
amount proportional to theJirst power of the wave slope, the lower sign combina- 
tions are of ‘capillary-type’ with a decreased speed. It is remarkable that the 
existence of these ‘periodic solutions of finite amplitude ’ require very special 
initial conditions, namely that the relative phase be zero and the initial amplitudes 
be exactly in the ratio 4. With any other choice of initial amplitudes, the inter- 
mediate ‘ everything modulating ’ case obtains, which is not strictly periodic. 
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3. The higher order corrections 
Still retaining the simplifying assumption that a/aX, = 0, it is a relatively 

simple matter to determine $c2) from (2.9) after removal of the secular forcing 
terms from the right-hand side, and then Q2) from ( 2 . 5 ~ ) .  A particular solution 
of (2.9) is easily seen to be 

$@)+ = [giwa,a, e3Iklz+W + 4 i w 4  e41klz+4W] + [ . . .I*.  

Then qV2) consists of this plus an arbitrary multiple of the solutions of the homo- 
geneous part of (2.9) satisfying Laplace's equation, which may be taken to be 

[i& elklz+i@ + iwA 2 e2Iklz+W] + [...I*, 

where A, and A, are arbitrary and depend on the initial condition as will be seen 
below. This solution for $c2) allows us to determine gC2) from (2.5u), which is 
easily seen to be 

I Icl = [( 2uTu2 - A,) ei@ + ($u: - A,) e2i* - 6u,a, e3;* - 2 4  e4i@] + [. . . I* .  (3.1) 

We wish now to compare the complete solution correct to O(E)  with those 
previously determined, namely those for which the initial amplitudes and phases 
are such that the amplitude modulations disappear altogether. That is, we specify 
that A, = & +A, and 8 = 0 at T = To so that (in dimensional terms now) 

5' = A'([l& a(2 - d,) A'k'] cosx 5 *I1 f (8  - d,) A'k'] cos 2x 

T $A'k' cos 3x - $A',' cos 4x}, ( 3 4  

where x = k'x'-w'(l k &A'k')t', and the upper or lower signs correspond to 
gravity-type or capillary-type profiles respectively. The real constants d are 
d, = I 2Al/A21 and d, = 1A2/A21. The wave form is strictly periodic, and the phase 
speed is increased or decreased by an amount one-quarter of the maximum slope 
of the fundamental component. These initial conditions are the only ones which 
will produce a strictly periodic solution. 

The special solutions (3.2) together with the phase speed corrections are the 
solutions found by Wilton and those determined subsequently by Pierson & 
Fife apart from their unimportant algebraic errors in the coefficients of the 
third- and fourth-harmonic terms, provided due account of the arbitrary con- 
stants d, and d, be taken. But this too is unimportant since in an experiment, the 
amplitude of the fundamental is determined by external conditions, and the 
amplitudes in (3.2), being arbitrary, must be chosen to coincide with the measured 
value. This indeed is the assumption used by Pierson & Fife, who set d, = 2 once 
and for all. 

Before the edifying work of Simmons, the two types of solutions of this non- 
linear problem were the pure amplitude modulations described by McGoldrick 
which were measured in detail and the periodic solutions for which the system 
responded with a Poincarb frequency shift. It is perhaps ironic that those solu- 
tions are no more than those dictated by very special initial conditions within 
the framework of a much more general expansion scheme. 
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We further suggest that detection of the periodic solutions is an extremely 
difficult matter for a real liquid. The requirement for their existence is two-fold: 
that the amplitudes of the fundamental and second harmonic be precisely in the 
ratio k 2: 1 and that they be in phase. But viscous attenuation will affect both 
components differently. That is, with appropriate initial conditions at a wave- 
maker, the spatial logarithmic decrements (to the lowest order) of the two com- 
ponents based on a scrupulously clean surface are - 2vk’2/ U ;  and - 8vkt2/ U;  per 
unit length respectively, which are in a ratio of 7/20. Within a short distance of 
the wave-maker the necessary amplitude ratio will not be obtained and the 
interaction will produce modulations. This has been observed qualitatively in 
preliminary experiments, more or less, but any detailed measurements are too 
tedious for the reward and have been laid aside permanently. 
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